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Oscillatory and chaotic dynamics in compartmentalized geometries

Francisco Cha´vez and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 12 November 2001; published 26 April 2002!

The effects of spatial compartmentalization of a multistep reaction mechanism~Willamowski-Rössler
model! whose mass action rate law shows oscillations and chaotic dynamics are explored. The mechanism is
decomposed into subsets of reactions that are then assumed to take place in distinct regularly or randomly
distributed spatial domains in the system. The reactive domains are coupled by diffusion. The spatiotemporal
system states are investigated as a function of the system size and geometrical arrangement of the domains. A
compartmentalization is chosen where the isolated domain attractors are simple steady states. It is then shown
that changes in the system size or domain geometry can produce bifurcations leading to simple or period-
doubled oscillatory attractors as well as chaotic states. These bifurcations are analyzed by direct simulations of
the compartmentalized reaction-diffusion equations and by an analysis in terms of integral equations.
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I. INTRODUCTION

Spatially extended chemically reacting systems can
velop a variety of spatial and temporal patterns when dri
far from equilibrium @1#. On macroscopic space and tim
scales, the origin and nature of such patterns can be anal
in terms of reaction-diffusion equations where reaction ra
that follow from mass action kinetics are supplemented w
diffusion terms. In this description one assumes that the s
reaction mechanism operates in each local region of the
dium. Such homogeneous media are the exception ra
than the rule in nature. Most systems we encounter are in
mogeneous. The inhomogeneity can take many forms inc
ing spatial variations in system parameters, externally
posed spatial gradients, heterogeneity in the substrate
which the reactions take place, etc.

In this paper, we study some general features of a spe
type of inhomogeneous chemically reacting system. We s
pose that the chemical reaction mechanism comprises se
elementary steps and that subsets of the elementary ste
the full mechanism take place in specific localized spa
regions. Thus, various elements of the reaction are spat
compartmentalized and these compartmentalized dom
can communicate with each other by diffusion of chemi
species. For such inhomogeneous media one might ex
that the dynamical structure of the system will depend
geometrical factors that characterize the reactive dom
configurations and the magnitudes of the diffusion coe
cients of the chemical species. For example, when reac
domains are separated by distances much longer than
diffusion length, the domains will act independently. Sin
the reaction mechanisms differ from domain to domain, o
will observe a pattern of different localized attractors. If t
diffusion length is large compared to the domain distributio
the domains will act cooperatively and one will see dynam
akin to that of the full reaction mechanism.

Such compartmentalization of reaction dynamics can
cur both in laboratory experiments and in nature. Laborat
examples include the Belousov-Zhabotinsky reaction car
out in microemulsions@2,3#, where some reactions occu
only within the micelles in the microemulsion and othe
1063-651X/2002/65~5!/056203~9!/$20.00 65 0562
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occur only in the bulk of the medium. The same reacti
may be carried out on specifically designed patterns i
catalytic membrane@4#. Catalytic oxidation reactions ma
occur on patterned platinum single-crystal surfaces@5,6#.
Compartmentalization of biochemical reactions is comm
Many of the reactions in the cell occur in specialized o
ganelles or other localized regions. The effects of comp
mentalization of simple models of biochemical reactio
have been studied earlier. Compartmentalization can cha
the stability of the steady states and can influence oscilla
dynamics@7–10#. Its effects on the stationary states of
bistable system have also been investigated@11#.

In this paper, we study the effects of compartmentali
tion on reaction kinetics whose mass action rate law gi
rise to oscillatory and chaotic dynamics. Since the reperto
of possible behavior is large and investigation of the syst
states involves issues such as the synchronization of reg
and chaotic oscillations in extended inhomogeneous me
compartmentalization can have nontrivial effects on the
namics. In order to illustrate the phenomena we make us
the Willamowski-Ro¨ssler ~WR! model @12# that exhibits a
period-doubling cascade to a chaotic attractor. Section II o
lines the WR mechanism, describes the particular form of
compartmentalization chosen in this study, and gives
compartmentalized reaction-diffusion equations that form
basis for the analyzes presented in the subsequent sectio
numerical study of a regular distribution of reactive doma
is presented in Sec. III, while Sec. IV gives the results of
approximate analytical treatment of regular compartmen
izations, which provides insight into the observed pheno
ena. Section V describes the dynamical behavior of syst
in which the reactive domains are randomly distributed
one- and two-dimensional media. The conclusions of
study are given in Sec. VI.

II. COMPARTMENTALIZED WILLAMOWSKI-RO ¨ SSLER
MODEL

The WR model @12# was constructed to show that
chemical mechanism that involves only bimolecular ste
can yield deterministic chaotic dynamics. The mechani
©2002 The American Physical Society03-1
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comprises the following bimolecular steps:

A11U

k21

k1

2U, ~1!

U1V

k22

k2

2V, ~2!

A51V

k23

k3

A2 , ~3!

U1W

k24

k4

A3 , ~4!

A41W

k25

k5

2W. ~5!

The speciesA1 ,A2 , . . . ,A5 are pool chemicals whose con
centrations are held constant by flows of reagents into
out of the system whileU,V, andW are the species whos
concentrations vary with time. From the reaction netwo
diagram for this model in Fig. 1, one sees that the W
mechanism can be viewed as a coupling between a Lo
Volterra ~LV ! oscillator involving the speciesU and V, and
‘‘switch’’ ~S! involving speciesU andW @13#.

The time evolution of the concentrations is described
mass action kinetics,

du

dt
5k1u2k21u22k2uv1k22v22k4uw1k24 , ~6!

dv
dt

5k2uv2k22v22k3v1k23 , ~7!

dw

dt
52k4uw1k241k5w2k25w2, ~8!

where the concentrations corresponding to the various
cies are denoted by lower case letters; e.g.,cU5u. The con-
centrations of pool speciesAi may be included in the rate
constantsk1 ,k3 ,k23 ,k24, andk5. We assume this has bee
done without change of notation.

FIG. 1. Reaction network diagram of the Willamowski-Ro¨ssler
oscillator. The box labeled LV comprises the Lotka-Volterra e
ment and the box labeledS comprises the ‘‘switch’’ element.
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The dynamical structure that follows from this rate la
has been studied earlier and we review only some of its m
important features@13#. Depending on the values of the pa
rameters in the setm5$k61 ,k62 ,k63 ,k64 ,k65%, this system
of equations can exhibit fixed points as well as periodic a
chaotic attractors in the three-dimensional concentra
phase space. In the calculations presented below,
select m5$k1531.2,k251.45,k3510.8,k451.02,k5516.5,
k2150.2,k22 ,k2350.12,k2450.01,k2550.5% and takek22
as the bifurcation parameter.

For k22.k22
H 50.1715 the WR reaction has a stable fix

point. At k22
H the system undergoes a Hopf bifurcation and

period-1 limit cycle appears. A period-doubling cascade
chaos is found ask22 is decreased further. For future refe
ence, the bifurcations to period-2 and period-4 orbits occu
k22'0.1 andk22'0.085, respectively, while a fully devel
oped chaotic attractor is found atk2250.072.

Given the network structure of the WR oscillator it
interesting to study a compartmentalized medium in wh
there are two types of reactive domain: LV domains wh
reactions~1!, ~2!, and ~3! take place, andS domains where
reactions~1!, ~4!, and ~5! occur. The system can then b
described by a reaction-diffusion equation

]c~r ,t !

]t
5D¹2c~r ,t !1R„c~r ,t !…, ~9!

subject to appropriate boundary and initial conditions. H
c(r ,t)5$ck(r ,t)%5$u(r ,t),v(r ,t),w(r ,t)% is the vector of
local concentrations at timet, D is the diffusion coefficient
matrix assumed to be constant and diagonal, andR„c(r ,t)…
5$Rk„c(r ,t…% is the vector of reaction rates whose eleme
can be written as

Rk„c~r ,t !…5(
i 51

N

Rk
$a i %

„c~r ,t !…Q i~r !, ~10!

whereQ i(r ) is a characteristic function that is unity withi
domain i and zero otherwise andN is the total number of
reactive domains. In this equationRk

$a i % is the reaction rate
for speciesk corresponding to the subset of reactions$a i%
that occur in domaini. For the specific compartmentalizatio
considered here, the reaction terms are

Ru
LV5k1u~r ,t !2k21u~r ,t !22k2u~r ,t !v~r ,t !1k22v~r ,t !2,

Rv
LV5k2u~r ,t !v~r ,t !2k22v~r ,t !22k3v~r ,t !1k23 ,

Rw
LV50, ~11!

and

Ru
S5k1u~r ,t !2k21u~r ,t !22k4u~r ,t !w~r ,t !1k24 ,

Rv
S50,

Rw
S52k4u~r ,t !w~r ,t !1k241k5w~r ,t !2k25w~r ,t !2.

~12!

-

3-2
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OSCILLATORY AND CHAOTIC DYNAMICS IN . . . PHYSICAL REVIEW E65 056203
In the limit of infinite diffusion the behavior is indepen
dent of the geometrical details of the medium and is equ
lent to the well-mixed case. In the limit of low diffusion th
reactive domains act independently and the nature of the
tractors within the domains is determined by the subse
reactive steps that take place in the domains. In particu
LV domains have a single stable focus whileS domains ex-
hibit three different solutions: a stable node whereu is al-
most extinct, another stable node wherew almost vanishes
and an unstable node that separates the first two stable n
The individual reactive domains have a bifurcation struct
that differs from that of the full reaction mechanism and
investigate how diffusion and geometry determine the
namics of the compartmentalized system.

III. REGULAR DISTRIBUTION OF DOMAINS

Consider a one-dimensional medium with lengthL con-
taining a simple regular distribution of alternating LV andS
domains. The domains have lengthl 5L/2 and center-to-
center interdomain distanced5L/2. The diffusion coeffi-
cients of all species were taken to be equal,Du5Dv5Dw
5D. The reaction-diffusion equation was solved using
Euler scheme with periodic boundary conditions. Bound
conditions play an important role in determining the natu
of the patterns seen in compartmentalized systems. Thro
out the paper, with one exception discussed in Sec. IV A,
use periodic boundary conditions to model infinitely e
tended regular arrays of reactive domains or random di
butions in large systems.

It is convenient to use scaled time and length un
t→t/t and x→x/ADt. In terms of these scaled units, wit
t51, the reaction-diffusion equation has the form in Eq.~9!
with D5I , the unit matrix. The diffusion length of the sys
tem l D5ADtc expressed in these dimensionless units
l D→Atc /t, wheretc is some characteristic time scale of th
problem. A suitable choice oftc is the period of one oscilla
tion of the system which, for the system parameters con
ered below, lies in the range 1.5>tc /t>5 and thus 1.2
>l D>2.2. Given this scaling we may investigate the beh
ior of the compartmentalized WR system for different valu
of scaled system lengthL. The results reported in the text an
figures are presented in terms of these dimensionless s
and time units; chemical concentrations are also dimens
less and determined by the values of the rate constants g
in the preceding section.

Figure 2 shows the (u,v,w) phase-space trajectories
the globally averaged concentration fields projected onto
uv plane fork2250.11 and different values ofL. The well-
mixed WR system has a period-1 limit cycle for this value
k22. While a period-1 limit cycle is observed for very sma
system sizes, for largeL the system instead evolves to
stable fixed point determined by the stationary states of
independent LV andS domains. A limit cycle develops atL
50.777 and, asL decreases, the size of the limit cycle
phase space grows until it resembles that of the well-mi
WR system. The period of the limit cycle remains nea
constant atT51.74 for 0.777,L,0.090, the system siz
range that was investigated. While the phenomenon is s
05620
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lar in appearance to the behavior of globally averaged c
centration fields in oscillatory media where dephasing occ
for large system sizes, here the nature of the local dynam
itself changes as a result of compartmentalization.

For k2250.095, where a period-2 cycle exists in the we
mixed WR system, whenL is much larger than the diffusion
length l D , the system again evolves to a stable fixed po
determined by the local stationary states of the independ
LV and S domains. AsL decreases, first a period-1 lim
cycle develops. This limit cycle grows until a period
doubling bifurcation occurs and the globally averaged c
centration field executes a period-2 cycle.

Figure 3 shows the globally averaged attractors fork22
50.072, where the well-mixed WR system has a chaotic
tractor. As in the previous examples, the system sizeL plays
the role of a bifurcation parameter and as it decreases
observes a period-doubling sequence and a chaotic attra
In this regime the dynamics of the system is very sensitive
the system lengthL. For L50.283 the attractor is a period-
limit cycle, while for L50.2309 it exhibits two-banded
chaos.

FIG. 2. Limit cycles in the compartmentalized WR system p
jected onto theuv plane. Concentric limit cycle loops of increasin
size correspond to decreasingL (L50.756, 0.730, and 0.4). The
outermost cycle corresponds to that for the well-mixed WR mod

FIG. 3. Development of a chaotic attractor in the compartm
talized WR system fork2250.072. Figures~a!–~d! correspond, re-
spectively, toL50.283, 0.258, 0.2309, and 0.179.
3-3
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IV. INTEGRAL REPRESENTATION

A. Time-dependent case

In order to gain further insight into the nature of the d
namics in compartmentalized reacting media, it is usefu
adopt an alternative approach that is based on an inte
representation of the formal solution of the reaction-diffus
equation@11#. The formal solution of Eq.~9! for the concen-
tration of speciesk is @14#

ck~r ,t !5E G~r ,t;r0,0!fk~r0!dsr0

1E
0

tE G~r ,t;r0 ,t0!Rk„c~r0 ,t0!…dsr0dt0

1DkE
0

t R @G~r ,t;r0 ,t0!“ r0
ck~r0 ,t0!

2ck~r0 ,t0!“ r0
G~r ,t;r0 ,t0!#•n̂dS0dt0 . ~13!

The time-dependent Green function isG(r ,t;r0 ,t0), fk(r ) is
the initial condition,n̂ is the unit vector normal to the bound
ary surface of the system, anddS0 is a differential element of
the surface area of the system.

Rather than considering the entire space and tim
dependent concentration field, we focus on the concentra
field of speciesk averaged over reactive domainj,

ck, j~ t !5
1

Vj
E

V j

ck~r ,t !Q j~r !dsr , ~14!

whereVj is the volume of domainj andQ j (r ) is a charac-
teristic function that is unity within domainV j and zero
otherwise. Using the approximations introduced earlier@11#,
namely, a multipole expansion of the characteristic functio
for domains different fromj and an assumption of uniformit
within domainj, the evolution of the domain volume averag
of the concentrations is given by

ck, j~ t !5I k, j
f 1DkI k, j

B 1(
i 51

N E
0

t

vk, j i ~ t,t0!Rk
$a i %

„ci~ t0!…dt0 ,

~15!

where

I k, j
f 5

1

Vj
E E G~r ,t;r0,0!fk~r0!Q j~r !dsr0dsr , ~16!

accounts for the effect of the initial concentration fieldfk ,
and

I k, j
B 5

1

Vj
E

0

tE R @G~r ,t;r0 ,t0!“ r0
ck~r0 ,t0!

2ck~r0 ,t0!“ r0
G~r ,t;r0 ,t0!#•n̂Q j~r !dS0dsrdt0 ,

~17!
05620
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accounts for the effects arising from the system’s boundar
The prefactorsvk, j i are given by

vk, j i ~ t,t0!5
1

Vj
E E

V j

G~r ,t;r0 ,t0!dsr0dsrd j i

1E
V j

G~r ,t;r i ,t0!dsr ~12d j i !. ~18!

In order to proceed further the Green function must
specified. For finite one-dimensional systems, with homo
neous or zero-flux boundary conditions, the Green funct
may be written as an infinite series. Although calculatio
may be carried out for such boundary conditions, use of
complex form of the Green function obscures the analysis
the results. For this reason, we examine a simpler situat
an infinite system with zero concentrations atx56`, where
the Green function is given by

G~x,x0 ;t,t0!5

expF2
~x2x0!2

4~ t2t0! G
2Ap~ t2t0!

. ~19!

In writing Eq. ~19! we have used the scaled variables intr
duced in Sec. III, whereDk51 for all speciesk. As a result
thevk,i j factors do not depend onk and we drop this symbo
and refer to these quantities asv i j . Substituting this expres
sion in Eq.~18! and performing the integrations for a me
dium with domains of lengthl separated distancesdi j , the
prefactors are

v i i ~ t,t0!5
2

l
At2t0

p
$exp@2 l 2/4~ t2t0!#21%

1erf~ l /2At2t0!,

v i j ~ t,t0!5
1

2 FerfS 2di j 1 l

4At2t0
D 2erfS 2di j 2 l

4At2t0
D G , ~20!

where erf() is the error function.
We may now apply this general formalism to the compa

mentalized WR system and, for simplicity, we setfk50 so
that only the third term in Eq.~15! remains. We suppose tha
the infinite medium contains two domains, one of type L
~domain 1!, and the other of typeS ~domain 2!. Under these
conditions, remembering thatRv

25Rw
1 50, Eq. ~15! simpli-

fies to the set of integral equations

uj~ t !5E
0

t

v j 1~ t2t0!Ru
1
„c1~ t0!…dt0

1E
0

t

v j 2~ t2t0!Ru
2
„c2~ t0!…dt0 ,

v j~ t !5E
0

t

v j 1~ t2t0!Rv
1
„c1~ t0!…dt0 ,

wj~ t !5E
0

t

v j 2~ t2t0!Rw
2
„c2~ t0!…dt0 , ~21!
3-4
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OSCILLATORY AND CHAOTIC DYNAMICS IN . . . PHYSICAL REVIEW E65 056203
for j 51,2.
Several features of these equations are worth noting.

spatial aspects of the medium are taken into account in
prefactorsv. The values of the concentrations at timet are
obtained by integration of the reactive terms over all ear
times t0, weighted by the factorsv j i . Thus, the factor
v j i (t,t0) can be interpreted as the influence that the react
in domaini at time t0 exert on domainj at time t. It can be
shown thatv j j (t,t)51 andv j i (t,t)50. Making use of the
change of variablez5 l /A4(t2t0), the prefactors can be
written as

v i i ~z!5
1

zAp
@e2z2

21#1erf~z!

v i j ~z,ai j !5
1

2 H erfFzS ai j 1
1

2D G2erfFzS ai j 2
1

2D G J ,

~22!

where the parameterai j is the distance between domains
units of the domain lengthl , di j 5ai j l . Since we have only
two domains,di j [al. For nonoverlapping domains 1<a
<`.

The variation of thev i j with z is shown in Fig. 4. The
diagonal termsv i i increase monotonically withz while each
off-diagonal termv i j has a maximum. In the limitz→`,
v i i →1, whereas the off-diagonal termsv i j →0. In this limit
we recover from Eqs.~21!, the simple solutions correspond
ing to independent domains. However, forz→0, these equa-
tions reduce identically toc50, which is the concentration
imposed at the boundary. The values ofz corresponding to
the maxima inv i j are given by

zm5A 1

2a
ln

2a11

2a21
, ~23!

and substituting this result into the definition ofz, we obtain
an expression for the time gap at the maxima,

~ t2t0!m5
al2

2 ln@~2a11!/~2a21!#
. ~24!

FIG. 4. Prefactorsv i i and v i j as a function ofz. For the off-
diagonal term, the dotted line corresponds toa52 and the continu-
ous line corresponds toa51.
05620
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This time gap increases monotonically, faster than linea
with the separation between the domainsa.

We have solved Eq.~21! for values ofa ranging from that
for widely separated reactive domains to adjacent reac
domains. In all cases the attractor was an inhomogene
stationary state. Figure 4 provides insight into the reason
oscillations are not observed. The self contributions fro
reactive domains are always much larger than the contr
tions from the neighboring domain whent0→t, except for
very small l, but then all prefactors tend to zero and t
boundaries dominate. Thus, the strong boundary effects
clude the appearance of oscillations when the reactive
mains are strongly coupled.

Oscillations were found for a system with a single doma
supporting the full reaction mechanism. The methodolo
developed above may be applied to study the effect of
domain sizel on the dynamics of this isolated domain. For
large enough domain, for instancel 563.2, the domain-
averaged concentrations execute a chaotic trajectory in p
space. For a sufficiently smalll; for instance, forl 51.414,
the system loses its oscillatory behavior and evolves t
fixed point. For intermediate lengths, we have observed li
cycles of different periodicity; e.g., a period-2 cycle is o
served for l 520 and a period-1 cycle forl 56.324. This
behavior is the opposite of that found for a compartmen
ized medium, where the more complex behavior is seen
smaller system sizes.

B. Time-independent case

If the attractor is a stationary state, one can use the ti
independent form of Eq.~15! to study the solution structure
For a finite medium of lengthL with two reactive domains
and fixed concentrations at the boundaries, we obtain the
of equations,

uj5v j 1
s Ru

11v j 2
s Ru

21u0 ,

v j5v j 1
s Rv

11v j 2
s Rv

21v0 ,

wj5v j 1
s Rw

1 1v j 2
s Rw

2 1w0 , ~25!

for sites j 51,2, whereu0 ,v0, andw0 are the concentration
at the boundaries. The superscript on thev i j

s prefactors is
used to indicate that these quantities are calculated using
appropriate time-independent Green functionG(x,x0),

G~x,x0!5H S 12
x0

L D x if x<x0

S 12
x

L D x0 if x>x0 .

~26!

Equations~25! are further simplified using the fact tha
Rw

1 5Rv
250. Furthermore, settingu05(u11u2)/2, v05(v1

1v2)/2, andw05(w11w2)/2, we establish periodic bound
ary conditions for a regular distribution of domains. Manip
lating Eqs.~25! we find that the stationary solutions of th
reaction-diffusion problem are given by the solutions of t
set of algebraic equations,
3-5
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FRANCISCO CHÁVEZ AND RAYMOND KAPRAL PHYSICAL REVIEW E 65 056203
Rv
150,

Rw
2 50,

Ru
11Ru

250,

g~Ru
12Ru

2!5u12u2 , ~27!

where g5v11
s 2v12

s 5x1ld/L2 l 2/6 and, as usual,d is the
distance between the reactive domains andl is their length.
The wji prefactors for these conditions are

wji 5H S 12
xj

L D xj l 2
l 2

6
if xi5xj

S 12
xi

L D xj l if xj,xi ,

~28!

wherexi denotes the position of the center of reactive d
main i.

The first three equations in Eqs.~27! simply reflect the
fact that the stationary state is reached when the
production/consumption of all species is zero. In addition
can be shown thatv15v2 andw15w2; thus, the solution of
the system of equations~27! gives the six stationary stat
concentrations of the problem.

The validity of the approximations made in the course
developing these equations can be tested in several ways
instance, forg50 we obtainu15u2 and recover the well-
mixed case. Also, notice that forg5`, we obtain from Eqs.
~27! that Ru

15Ru
250, i.e., each domain attains its local st

tionary state independently.
For intermediate values ofg one can solve Eqs.~27! and

compare with the numerical solution of the reactio
diffusion equations in nonoscillatory regimes. Good agr
ment is found. Figure 5 shows the results fork250.11 and
l 50.4472. This domain length is too large to support os
lations in the compartmentalized medium and the sys
rapidly evolves to the final stationary spatial profile exhibit
in the figure. Only the profile foru is shown but similar
agreement is found for all other concentration fields. T

FIG. 5. Stationary spatial profile of the concentration of theu
field for k2250.11 andl 50.4472. The continuous line is the resu
from the direct numerical solution of the reaction-diffusion equ
tion. The dashed line is the approximate solution for the doma
averaged concentrations using the integral representation.
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stationary concentrationsus , vs , andws averaged over theS
and LV domains are presented in Table I

Equations~27! can be used to obtain an estimate of t
value of the length of the domain corresponding to the on
of oscillations. For large values ofl, these equations exhibi
three solutions. Two of the solutions collide at a critical val
of l, l c , leaving only one real solution. For the system co
sidered in this section we findl c50.40, which is to be com-
pared with l c50.38, the numerical estimate of the critic
value obtained from the simulation of the reaction-diffusi
equation.

V. RANDOM DISTRIBUTION OF DOMAINS

A. One-dimensional media

We have also studied random distributions of LV andS
reactive domains. The one-dimensional random medium
constructed in the following way. The total number of rea
tive domains was fixed atN. A number N of points was
chosen at random from a uniform distribution on@0,L# and
each point was taken to be the center of an LV orS reactive
domain of lengthl. The domain types, LV andS, were cho-
sen with probabilitiesp and 12p, respectively, allowing
overlapping of domains if the distance between two cen
was less thanl. The overlapping regions were assumed
support the full WR reaction mechanism and constitute
third type of reactive domain with labelC. The value of
k2250.072, where the well-mixed system is in the chao
regime, was chosen for all of the one- and two-dimensio
simulations reported in this section.

Even thoughN is fixed, since domains may overlap, flu
tuations exist in the densities of reactive domains. The d
sities of each type of domain are denoted byr I , rLV , rS ,
and rC , for inactive LV, S, and C domains, respectively
whererJ5LJ /L with LJ the length occupied by domains o
typeJ. Also, although LV andSdomains with a fixed length
l are randomly placed in the system, due to the fact t
domains may overlap to generate type-C domains, the do-
mains that result from this random process do not hav
constant length, in contrast with the regular domain confi
rations considered in the previous sections.

The evolution of the WR system with such random co
partmentalization was investigated. Different realizations
the random process were generated for a system of sizL,
taking l 5L/50 andp50.5. Two values ofN were consid-
ered:N526, where there is a very low average density

TABLE I. Comparison of the concentrations averaged over
different types of domain, obtained by solving the reactio
diffusion ~RD! equations and the integral representation approxim
tion ~Integral!.

us vs ws

LV ~RD! 7.157 8.489 18.401
LV ~Integral! 7.158 8.511 18.398
S ~RD! 8.083 8.508 18.374
S ~Integral! 8.084 8.511 18.398

-
-
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overlapping sites^rC&50.053, and N580, where ^rC&
50.43. Here the angular brackets refer to an average
realizations of the random compartmentalization process

For systems with loŵrC&50.053, in the limit of largeL,
the dynamics on LV andSdomains evolves to the stationa
states that are determined by the partial WR mechanisms
operate on these domain types. However, oscillations are
served on theC domains where the full WR mechanism o
erates. This behavior is seen in the space-time plots show
the top two panels of Fig. 6 for one realization of the rand
compartmentalization. The realization forL5200 shown in
this figure has six oscillating domains~left panel!. Since the
scaled diffusion lengthl D is fixed, asL decreases, the osci
lations are no longer confined to theC domains but extend
into the neighboring LV andS domains. These oscillating
centers emit waves that are quickly dissipated in the s
rounding medium. The oscillations in this regime are loc
ized and their period is short; e.g., the period averaged o
five realizations of the random process is^T&50.89 while
the period for bulk oscillations is several times longer. F
the same domain configuration as in the upper left pane
Fig. 6, forL5115.47, one sees that the oscillations in five
these domains have been extinguished~upper right panel!.
For smaller values ofL, oscillations in all domains are ex
tinguished and the system exhibits a stable nonuniform
tionary state. Although the qualitative aspects of the beha
described above do not depend strongly on the partic
realization of the random medium, the spatial profile of t
stationary state does depend on the geometric details o
realization.

Further decrease ofL leads to a region of global oscilla
tions whenL'l D . These oscillations are different from

FIG. 6. Space-time plots for one realization of the random m
dium for N526 andL5200 ~top left! and L5115.47~top right!.
Time increases from bottom to top; time interval of five, time un
shown. The gray shades code the magnitudes of theu field. The
globally averagedu fields versus time corresponding to these tw
systems are shown in the lower left and right panels, respectivel
this figure.
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those observed for larger values ofL. The dynamics depend
more sensitively on the detailed geometry of the realizati
the phase-space shape of the global attractor can vary
some realizations may not even exhibit oscillations. For
ample, only two out of five realizations exhibited global o
cillations with average period̂T&54.72, five times larger
than that in the largeL regime. In this regime diffusion is
strong enough to yield coherent oscillations over the en
medium~see Fig. 7!.

For systems with a higher average density of overlapp
domains^rC&50.43, the medium contains larger clusters
C domains and clusters close to each other tend to sync
nize. The left panel of Fig. 8 shows a space-time plot of
dynamics in this regime forL5200. The three oscillating
regions near the right border of the system are synchroni
while the two oscillating regions near the left border em
waves. For intermediate values ofL the nonoscillatory re-
gime discussed above for the low concentration case is

-

of

FIG. 7. Space-time plots of the random medium forN526 for
small L: L52.82 ~upper left! andL52.39 ~upper right!. Coding is
the same as that in Fig. 6. A time interval of twenty, time units
shown in both panels. Phase plane plots of the globally averagu
and v fields for the systems shown in the upper panels:L52.82
~lower left!, L52.39 ~lower right!.

FIG. 8. Space-time plots for one realization of the random m
dium for N580: L5200, time interval of five, time units shown
~left! andL50.70, time interval of twenty, time units shown~right!
which corresponds to Fig. 9~lower right!. Coding is the same as
that in Fig. 6.
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observed and globally synchronized oscillations occur
most of the realizations. The period of the global oscillatio
averaged over five realizations of the random process,
found to bê T&51.36, which is considerably faster than th
for low rC . This behavior is expected since a larger prop
tion of C domains should lead to faster global dynami
however, it is still true that the phase-space shapes of
observed attractors depend on the details of the domain
tribution. The right panel of Fig. 8 is a space-time plot wh
the system is in the globally synchronized chaotic regim
Figure 9 shows the global attractors for a particular reali
tion for different sizes of the system. The globally averag
dynamics shows a partial period-doubling cascade and a
otic attractor corresponding to the dynamics in the rig
panel of Fig. 8.

B. Two-dimensional media

A two-dimensional random compartmentalized mediu
can be constructed by placing a total ofN circular domains
of radiusr at random in a system of sizeL3L with periodic
boundary conditions. Again, the discs are chosen to be
type LV with probabiliy p50.5 andS with probability 1
2p. The overlapping regions are of typeC, where the full
WR mechanism operates.

The upper left panel in Fig. 10 shows one realization
the random medium forN580 andr 5L/11.2. The domain
type is color coded by gray shades~see caption!. In this
realization the densities of the different domains arer I
50.1236, rLV50.1432, rS50.2894, andrC50.4438. The
total area fraction covered in this realization isrLV1rS
1rC5rT50.8764. The Johnson-Mehl-Avrami~JMA! equa-
tion, which has been used extensively in the materials
ence literature@15,16#, expressesrT in terms of the extended
area fractionre as

rT512e2re, ~29!

wherere is the area fraction covered by the circles ignori

FIG. 9. Phase plane plots of the globally averagedu andv fields
for N580 andL52.0 ~upper left!, 1.41 ~upper right!, 1.15 ~lower
left!, and 0.70~lower right!.
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overlapping,re5Npr 2/L2. In our realization the JMA equa
tion yields re50.8650. The percolation thresholdrT* for
overlapping circles has been determined earlier by mean
computer simulations@17# and Monte Carlo position spac
renormalization group calculations@18#. The results in the
literature give a value ofrT* between 0.67 and 0.688, thu
our medium exhibits an area fraction covered well above
threshold. However, while the discs percolate the overl
ping C-type regions do not. In the figure one can see that
medium contains six large clusters ofC domains and a few
additional smaller ones.

The remainder of the panels in this figure show instan
neous configurations of the concentration fieldu for different
values of the system size:L5112 ~top right!, 35.42~bottom
left!, andL511.20~bottom right!. The evolution of the sys-
tem for largeL is characterized by a sequence of concen
tion fronts propagating within the overlapping clusters. T
fronts are generated at the borders of the clusters and pr
gate until they collide and annhilate with an incoming fro
or reach another border. The shapes of these fronts ar
regular and are dictated by the shapes of the borders w
they are generated. Diffusive coupling is not strong enou
to homogeneize the interiors of the clusters. The cluster
LV and S domains attain their steady states and are o
weakly affected by the activity inside theC clusters. The
time series of the globally averagedu field is characterized
by irregular oscillations of short period and small amplitud
As L decreases larger regions of the medium synchron
The clusters ofC domains cease emitting pulses and be
oscillating uniformly and act as pacemakers. In Fig. 10~bot-
tom right!, one such large pacemaker is visible near
upper-right corner. IfL is decreased further diffusive cou

FIG. 10. Top left: One realization of the random configurati
of LV, S, andC domains. The domain type is color coded by shad
of gray; the darkest shades correspond to inactive areas of the
dium and the lightest toC-type overlapping domains. The othe
panels are instantaneous configurations of theu field for L5112
~top right!, 35.42 ~bottom left!, andL511.20 ~bottom right!. The
magnitude ofu is proportional to the intensity of gray shade.
3-8
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pling is able to synchronize the entire medium and the s
tem enters a regime of global oscillations, which have lo
period and large amplitude.

VI. CONCLUSIONS

When the reaction mechanism comprises several s
and can support oscillatory or chaotic dynamics, comp
mentalization can lead to a variety of spatiotemporal sta
not observed either in the underlying well-mixed system
in the reaction-diffusion system without compartmentaliz
tion. The complexity of these systems arises from the in
play between the compartmentalization of specific subset
the reaction mechanism in distinct spatial domains and
diffusive coupling among such domains. We have sho
how system size or diffusion and domain geometry can ac
bifurcation parameters to produce new spatiotemporal sta
The results show that the spatial and temporal patterns
served in a given system are determined by geometrical
tors. As a result one cannot simply deduce the nature of
dynamics from a knowledge of the mass action kinetics t
follows from the reaction mechanism.

The WR mechanism and the specific compartmental
tion we have studied in some detail in this paper should
regarded as an illustration, that demonstrates the type
phenomena that can be seen in compartmentalized reac
diffusion systems in the far-from-equilibrium domain. A
such, even though this system was chosen because it exh
a variety of attractors in its well-mixed form, a restricte
perspective was taken in some parts of the study. Comp
mentalization often entails not only partitioning of reacti
steps of the mechanism in spatial domains, but also conco
tant changes of the diffusion coefficients of chemical spec
in the different domains. Our investigations intentiona
have made the simplifying assumption that diffusion coe
r-

r-
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cients are the same for all species and are independen
spatial coordinates. This has allowed us to focus on effe
arising solely from compartmentalization of the reacti
mechanism. When spatial variations in diffusion coefficie
are accounted for, new dynamics is likely to arise.

Compartmentalized geometries can play a role in re
tions on composite catalytic surfaces, in microemulsions
other inhomogeneous media, and cellular biological syste
thus, the phenomena we have described in this paper ca
sought in experiments on chemical and biochemical syste
In this work we have chosen to use a set of scaled dim
sionless variables in terms of which the diffusion coefficie
is D51. The system size in dimensional unitsL̄ is given by
L̄5ADtL and the diffusion length byl̄ D5ADtl D . The
values of diffusion coefficients in systems of interest c
vary widely, depending on the nature of the medium~solu-
tion, gel, solid surface, cell! in which diffusion takes place
and the characteristic reaction times can also vary wid
The space scales in systems of interest typically vary fr
mm to cm ranges. Since many of the phenomena we h
described arise from accessible length scale, diffusion
geometrical factor changes, the bifurcations discussed ab
should be observable in experimental studies designe
probe the spatiotemporal dynamics of such systems. I
now often possible to taylor the geometrical features of
homogeneous media, making it possible to probe the bi
cation structure that arises from geometrical features, suc
the differences between regular and random domain confi
rations. The work presented here should provide guide
such studies.
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